
Colorzero 2.0 Documentation
Release 2.0

Dave Jones

Nov 14, 2021

CONTENTS

1 Installation 1

2 Getting started 3

3 API - Color 7

4 API - Styles 19

5 Development 23

6 Change log 25

7 License 27

Index 29

i

ii

CHAPTER

ONE

INSTALLATION

1.1 Debian installation

On Debian1 (including its derivatives, Ubuntu2 and RaspiOS3) it is best to obtain colorzero via the apt utility:

$ sudo apt update
$ sudo apt install python3-colorzero

The usual apt upgrade method can be used to keep your installation up to date:

$ sudo apt update
$ sudo apt upgrade

To remove your installation:

$ sudo apt remove python3-colorzero

1.2 Other platforms

On other platforms, it is probably easiest to obtain colorzero via the pip utility:

$ sudo pip3 install colorzero

To upgrade your installation:

$ sudo pip3 install -U colorzero

To remove your installation:

$ sudo pip3 remove colorzero

1 https://www.debian.org/
2 https://ubuntu.com/
3 https://www.raspberrypi.com/software/

1

https://www.debian.org/
https://ubuntu.com/
https://www.raspberrypi.com/software/

Colorzero 2.0 Documentation, Release 2.0

2 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

The Color (page 7) class is the main interface provided by colorzero. It can be constructed in a large variety of
ways including with red, green, and blue components, “well known” color names (taken from CSS 3’s extended color
keywords4), HTML color specifications, and more. A selection of valid constructors is shown below:

>>> from colorzero import *
>>> Color('red')
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color(1.0, 0.0, 0.0)
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color(255, 0, 0)
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color('#ff0000')
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color('#f00')
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>

Internally, colorzero always represents colors as red, green, and blue values between 0.0 and 1.0. Color (page 7)
objects are tuple descendents. Crucially, this means they are immutable. Attempting to change the red, green, or blue
attributes will fail:

>>> c = Color('red')
>>> c.red
Red(1.0)
>>> c.red = 0.5
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

In order to manipulate a color, colorzero provides a simple series of classes which represent attributes of a color: Red
(page 15), Green (page 16), Blue (page 16), Hue (page 16), Lightness (page 17), Saturation (page 16) and
so on. You can use these classes in combination with Python’s usual mathematical operators (addition, subtraction,
multiplication, etc.) to manipulate a color. For example, continuing the example from above:

>>> c + Green(0.1)
<Color html='#ff1a00' rgb=(1, 0.1, 0)>
>>> c = c + Green(0.5)
>>> c
<Color html='#ff8000' rgb=(1, 0.5, 0)>
>>> c.lightness
Lightness(0.5)
>>> c = c * Lightness(0.5)
>>> c
<Color html='#804000' rgb=(0.5, 0.25, 0)>

Numerous attributes are provided to enable conversion of the RGB representation to other systems:
4 https://www.w3.org/TR/css3-color/#svg-color

3

https://www.w3.org/TR/css3-color/#svg-color
https://www.w3.org/TR/css3-color/#svg-color

Colorzero 2.0 Documentation, Release 2.0

>>> c.rgb
RGB(r=0.5, g=0.25, b=0.0)
>>> c.rgb_bytes
RGB(r=128, g=64, b=0)
>>> c.rgb565
31200
>>> c.hls
HLS(h=0.08333333333333333, l=0.25, s=1.0)
>>> c.xyz
XYZ(x=0.10647471144683732, y=0.0819048964489466, z=0.010202272707313633)
>>> c.lab
Lab(l=34.376494620040376, a=23.890819210881016, b=44.69197916172735)

Equivalent constructors exist for all these systems:

>>> Color.from_rgb(0.5, 0.25, 0.0)
<Color html='#804000' rgb=(0.5, 0.25, 0)>
>>> Color.from_rgb_bytes(128, 64, 0)
<Color html='#804000' rgb=(0.501961, 0.25098, 0)>
>>> Color.from_rgb565(31200)
<Color html='#7b3d00' rgb=(0.483871, 0.238095, 0)>
>>> Color.from_hls(*c.hls)
<Color html='#804000' rgb=(0.5, 0.25, 0)>
>>> Color.from_xyz(*c.xyz)
<Color html='#7f4000' rgb=(0.5, 0.25, 0)>
>>> Color.from_lab(*c.lab)
<Color html='#7f4000' rgb=(0.5, 0.25, 0)>

Note that some conversions lose a certain amount of precision.
The repr()5 output of Color (page 7) is relatively verbose by default, but this can be customized via the Color.
repr_style (page 9) class attribute:

>>> c = Color('red')
>>> c
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color.repr_style = 'html'
>>> c
Color('#ff0000')
>>> Color.repr_style = 'rgb'
>>> c
Color(1, 0, 0)

If you have a terminal capable of color output (usually this means an actual terminal, not those integrated into ap-
plications like IDLE, Thonny, etc.), you can also preview colors with this facility (the output below shows the ANSI
codes produced, but the documentation system won’t reproduce the colored output):

>>> Color.repr_style = 'term256'
>>> c
<Color ### rgb=(1, 0, 0)>
>>> repr(c)
'<Color \x1b[38;5;9m###\x1b[0m rgb=(1, 0, 0)>'
>>> Color.repr_style = 'term16m'
>>> c
<Color ### rgb=(1, 0, 0)>
>>> repr(c)
'<Color \x1b[38;2;255;0;0m###\x1b[0m rgb=(1, 0, 0)>'

These ANSI codes can also be generated by using colors with str.format()6. For example:
5 https://docs.python.org/3.9/library/functions.html#repr
6 https://docs.python.org/3.9/library/stdtypes.html#str.format

4 Chapter 2. Getting started

https://docs.python.org/3.9/library/functions.html#repr
https://docs.python.org/3.9/library/stdtypes.html#str.format

Colorzero 2.0 Documentation, Release 2.0

>>> '{c:16m}Red{c:0} Alert!'.format(c=Color('red'))
'\x1b[38;2;255;0;0mRed\x1b[0m Alert!'

See Format Strings (page 14) for more information.
A method (gradient() (page 11)) is provided to generate gradients which fade from one color to another. The
result is a generator, which must be iterated over if you want all the results:

>>> Color.repr_style = 'term16m'
>>> for c in Color('red').gradient(Color('green')):
... print(repr(c))
...
<Color ### rgb=(1, 0, 0)>
<Color ### rgb=(0.888889, 0.0557734, 0)>
<Color ### rgb=(0.777778, 0.111547, 0)>
<Color ### rgb=(0.666667, 0.16732, 0)>
<Color ### rgb=(0.555556, 0.223094, 0)>
<Color ### rgb=(0.444444, 0.278867, 0)>
<Color ### rgb=(0.333333, 0.334641, 0)>
<Color ### rgb=(0.222222, 0.390414, 0)>
<Color ### rgb=(0.111111, 0.446187, 0)>
<Color ### rgb=(0, 0.501961, 0)>

In a color-capable terminal, the “###” above will appear to fade between the two specified colors.
Methods are also provided to compare colors for similarity. The simplest algorithm (and the default) is “euclid”
which calculates the difference as the distance between them by treating the r, g, b components as coordinates in a 3-
dimensional space. The same color will have a distance of 0.0, whilst the largest possible difference is

√
3 (≈ 1.732):

>>> c1 = Color('red')
>>> c2 = Color('green')
>>> c3 = c1 * Lightness(0.9)
>>> c1.difference(c2, 'euclid')
1.1189122525867927
>>> c1.difference(c2)
1.1189122525867927
>>> c1.difference(c3)
0.09999999999999998

Various Delta-E7 algorithms (CIE1976, CIE1994, and CIEDE2000) are also provided. In these systems, 2.3 is
considered a “just noticeable difference”:

>>> c1.difference(c2, 'cie1976')
133.10729836196307
>>> c1.difference(c3, 'cie1976')
9.60280542204272
>>> c1.difference(c2, 'cie1994g')
50.97596644678241
>>> c1.difference(c3, 'cie1994g')
5.484832836355026
>>> c1.difference(c2, 'ciede2000')
72.18229138962074
>>> c1.difference(c3, 'ciede2000')
5.490813507834904

These algorithms are also available as straight-forward functions:

>>> cie1976(c1, c2)
133.10729836196307
>>> ciede2000(c1, c3)
5.490813507834904

7 https://en.wikipedia.org/wiki/Color_difference

5

https://en.wikipedia.org/wiki/Color_difference

Colorzero 2.0 Documentation, Release 2.0

6 Chapter 2. Getting started

CHAPTER

THREE

API - COLOR

The colorzero library includes a comprehensive Color (page 7) class which is capable of converting between nu-
merous color representations and calculating color differences. Various ancillary classes can be used to manipulate
aspects of a color.

3.1 Color Class

This the primary class in the package, and often the only class you’ll need or want to interact with. It has an extremely
flexible constructor, along with numerous explicit constructors, and attributes for conversion to other color systems.
class colorzero.Color(*args, **kwargs)

The Color class is a tuple which represents a color as linear red, green, and blue components.
The class has a flexible constructor which allows you to create an instance from any built-in color system. There
are also explicit constructors for every known system that can convert (directly or indirectly) to linear RGB.
For example, an instance of Color (page 7) can be constructed in any of the following ways:

>>> Color('#f00')
<Color html='#ff0000' rgb=(1, 0, 0)>
>>> Color('green')
<Color html='#008000' rgb=(0.0, 0.501961, 0.0)>
>>> Color(0, 0, 1)
<Color html='#0000ff' rgb=(0, 0, 1)>
>>> Color(h=0, s=1, v=0.5)
<Color html='#800000' rgb=(0.5, 0, 0)>
>>> Color(y=0.4, u=-0.05, v=0.615)
<Color html='#ff104c' rgb=(1, 0.0626644, 0.298394)>

The specific forms that the default constructor will accept are enumerated below:

7

Colorzero 2.0 Documentation, Release 2.0

Style Description
Single scalar parameter Equivalent to calling Color.from_string()

(page 11), or Color.from_rgb24()
(page 11).

Three positional parameters or a 3-tuple
with no field names

Equivalent to calling Color.from_rgb()
(page 11) if all three parameters are between
0.0 and 1.0, or Color.from_rgb_bytes()
(page 11) otherwise.

Three named parameters, or a 3-tuple with
fields “r”, “g”, “b”
Three named parameters, or a 3-tuple with
fields “red”, “green”, “blue”
Three named parameters, or a 3-tuple with
fields “y”, “u”, “v”

Equivalent to calling Color.from_yuv()
(page 11) if “y” is between 0.0 and 1.0, “u” is be-
tween -0.436 and 0.436, and “v” is between -0.615
and 0.615, or Color.from_yuv_bytes()
(page 11) otherwise.

Three named parameters, or a 3-tuple with
fields “y”, “i”, “q”

Equivalent to calling Color.from_yiq()
(page 11).

Three named parameters, or a 3-tuple with
fields “h”, “l”, “s”

Equivalent to calling Color.from_hls()
(page 11).

Three named parameters, or a 3-tuple with
fields “hue”, “lightness”, “saturation”
Three named parameters, or a 3-tuple with
fields “h”, “s”, “v”

Equivalent to calling Color.from_hsv()
(page 11)

Three named parameters, or a 3-tuple with
fields “hue”, “saturation”, “value”
Three named parameters, or a 3-tuple with
fields “x”, “y”, “z”

Equivalent to calling Color.from_xyz()
(page 11)

Three named parameters, or a 3-tuple with
fields “l”, “a”, “b”

Equivalent to calling Color.from_lab()
(page 11)

Three named parameters, or a 3-tuple with
fields “l”, “u”, “v”

Equivalent to calling Color.from_luv()
(page 11)

If the constructor parameters do not conform to any of the variants in the table above, a ValueError8 will
be raised.
Internally, the color is always represented as 3 float9 values corresponding to the red, green, and blue
components of the color. These values take a value from 0.0 to 1.0 (least to full intensity). The class provides
several attributes which can be used to convert one color system into another:

>>> Color('#f00').hls
HLS(h=0.0, l=0.5, s=1.0)
>>> Color.from_string('green').hue
Hue(deg=120.0)
>>> Color.from_rgb_bytes(0, 0, 255).yuv
YUV(y=0.114, u=0.436, v=-0.10001426533523537)

As Color (page 7) derives from tuple, instances are immutable. While this provides the advantage that
they can be used in a set10 or as keys of a dict11, it does mean that colors themselves cannot be directly
manipulated (e.g. by setting the red component).
However, several auxilliary classes in the module provide the ability to perform simple transformations of
colors via operators which produce a new Color (page 7) instance. For example, you can add, subtract, and
multiply colors directly:

>>> Color('red') + Color('blue')
<Color html='#ff00ff' rgb=(1, 0, 1)>
>>> Color('magenta') - Color('red')
<Color html='#0000ff' rgb=(0, 0, 1)>

8 Chapter 3. API - Color

https://docs.python.org/3.9/library/exceptions.html#ValueError
https://docs.python.org/3.9/library/functions.html#float
https://docs.python.org/3.9/library/stdtypes.html#set
https://docs.python.org/3.9/library/stdtypes.html#dict

Colorzero 2.0 Documentation, Release 2.0

Values are clipped to ensure the resulting color is still valid:

>>> Color('#ff00ff') + Color('#ff0000')
<Color html='#ff00ff' rgb=(1, 0, 1)>

You can wrap numbers in constructors like Red (page 15) (or obtain elements of existing colors), then add,
subtract, or multiply them with a Color (page 7):

>>> Color('red') - Red(0.5)
<Color html='#800000' rgb=(0.5, 0, 0)>
>>> Color('green') + Color('grey').red
<Color html='#808000' rgb=(0.501961, 0.501961, 0)>

You can even manipulate non-primary attributes like hue, saturation, and lightness with standard addition,
subtraction or multiplication operators:

>>> Color.from_hls(0.5, 0.5, 1.0)
<Color html='#00ffff' rgb=(0, 1, 1)>
>>> Color.from_hls(0.5, 0.5, 1.0) * Lightness(0.8)
<Color html='#00cccc' rgb=(0, 0.8, 0.8)>
>>> (Color.from_hls(0.5, 0.5, 1.0) * Lightness(0.8)).hls
HLS(h=0.5, l=0.4, s=1.0)

In the last example above, a Color (page 7) instance is constructed from HLS (hue, lightness, saturation)
values with a lightness of 0.5. This is multiplied by a Lightness (page 17) a value of 0.8 which constructs
a new Color (page 7) with the same hue and saturation, but a lightness of 0.4 (0.8 × 0.5).
If an instance is converted to a string (with str()) it will return a string containing the 7-character HTML
code for the color (e.g. “#ff0000” for red). As can be seen in the examples above, a similar representation
is included for the output of repr()12. The output of repr()13 can be customized by assigning values to
Color.repr_style (page 9).
red

Return the red value as a Red (page 15) instance
green

Return the green value as a Green (page 16) instance
blue

Return the blue value as a Blue (page 16) instance
repr_style

Specifies the style of output returned when using repr()14 against a Color (page 7) instance. This is
an attribute of the class, not of instances. For example:

>>> Color('#f00')
<Color html='#ff0000' rgb=(1, 0, 0)>
>>> Color.repr_style = 'html'
>>> Color('#f00')
Color('#ff0000')

The following values are valid:
• ‘default’ - The style shown above
• ‘term16m’ - Similar to the default style, but instead of the HTML style being included, a swatch
previewing the color is output. Note that the terminal must support 24-bit color ANSI codes15 for
this to work.

• ‘term256’ - Similar to ‘term16m’, but uses the closest color that can be found in the standard 256-
color xterm palette. Note that the terminal must support 8-bit color ANSI codes16 for this to work.

• ‘html’ - Outputs a valid Color (page 7) constructor using the HTML style, e.g.
Color('#ff99bb')

3.1. Color Class 9

https://docs.python.org/3.9/library/functions.html#repr
https://docs.python.org/3.9/library/functions.html#repr
https://docs.python.org/3.9/library/functions.html#repr
https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit
https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit

Colorzero 2.0 Documentation, Release 2.0

• ‘rgb’ - Outputs a valid Color (page 7) constructor using the floating point RGB values, e.g.
Color(1, 0.25, 0)

difference(other, method='euclid')
Determines the difference between this color and other using the specified method.

Parameters
• other (Color (page 7)) – The color to compare this color to.
• method (str17) – The algorithm to use in the comparison. Valid values are:
– ’euclid’ - This is the default method. Calculate the Euclidian distance18. This is by far
the fastest method, but also the least accurate in terms of human perception.

– ’cie1976’ - Use the CIE 197619 formula for calculating the difference between two
colors in CIE Lab space.

– ’cie1994g’ - Use the CIE 199420 formula with the “graphic arts” bias for calculating
the difference.

– ’cie1994t’ - Use the CIE 199421 forumula with the “textiles” bias for calculating the
difference.

– ’ciede2000’ - Use the CIEDE 200022 formula for calculating the difference.
Returns A float23 indicating how different the two colors are. Note that the Euclidian

distance will be significantly different to the other calculations; effectively this just measures
the distance between the two colors by treating them as coordinates in a three dimensional
Euclidian space. All other methods are means of calculating a Delta E24 value in which 2.3
is considered a just-noticeable difference25 (JND).

For example:

>>> Color('red').difference(Color('red'))
0.0
>>> Color('red').difference(Color('red'), method='cie1976')
0.0
>>> Color('red').difference(Color('#900'))
0.4
>>> Color('red').difference(Color('#900'), method='cie1976')
40.17063087142142
>>> Color('red').difference(Color('#900'), method='ciede2000')
21.078146289272155
>>> Color('red').difference(Color('blue'))
1.4142135623730951
>>> Color('red').difference(Color('blue'), method='cie1976')
176.31403908880046

Note: Instead of using this method, you may wish to simply use the various difference functions (eu-
clid() (page 17), cie1976() (page 17), etc.) directly.

classmethod from_cmy(c, m, y)
Construct a Color (page 7) from CMY26 (cyan, magenta, yellow) floats between 0.0 and 1.0.

Note: This conversion uses the basic subtractive method which is not accurate for color reproduction
on print devices. See the Color FAQ27 for more information.

classmethod from_cmyk(c, m, y, k)
Construct a Color (page 7) from CMYK28 (cyan, magenta, yellow, black) floats between 0.0 and 1.0.

10 Chapter 3. API - Color

https://docs.python.org/3.9/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Color_difference#CIE76
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
https://docs.python.org/3.9/library/functions.html#float
https://en.wikipedia.org/wiki/Color_difference
https://en.wikipedia.org/wiki/Just-noticeable_difference
https://en.wikipedia.org/wiki/CMYK_color_model
http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
https://en.wikipedia.org/wiki/CMYK_color_model

Colorzero 2.0 Documentation, Release 2.0

Note: This conversion uses the basic subtractive method which is not accurate for color reproduction
on print devices. See the Color FAQ29 for more information.

classmethod from_hls(h, l, s)
Construct a Color (page 7) from HLS30 (hue, lightness, saturation) floats between 0.0 and 1.0.

classmethod from_hsv(h, s, v)
Construct a Color (page 7) from HSV31 (hue, saturation, value) floats between 0.0 and 1.0.

classmethod from_lab(l, a, b)
Construct a Color (page 7) from (L*, a*, b*) float values representing a color in the CIE Lab color
space32. The conversion assumes the sRGB working space with reference white D65.

classmethod from_luv(l, u, v)
Construct a Color (page 7) from (L*, u*, v*) float values representing a color in the CIE Luv color
space33. The conversion assumes the sRGB working space with reference white D65.

classmethod from_rgb(r, g, b)
Construct a Color (page 7) from three linear RGB34 float values between 0.0 and 1.0.

classmethod from_rgb24(n)
Construct a Color (page 7) from an unsigned 24-bit integer number of the form 0x00BBGGRR.

classmethod from_rgb565(n)
Construct a Color (page 7) from an unsigned 16-bit integer number in RGB565 format.

classmethod from_rgb_bytes(r, g, b)
Construct a Color (page 7) from three RGB35 byte values between 0 and 255.

classmethod from_string(s)
Construct a Color (page 7) from a 4 or 7 character CSS-like representation (e.g. “#f00” or “#ff0000”
for red), or from one of the named colors (e.g. “green” or “wheat”) from the CSS standard36. Any other
string format will result in a ValueError37.

classmethod from_xyz(x, y, z)
Construct a Color (page 7) from (X, Y, Z) float values representing a color in the CIE 1931 color
space38. The conversion assumes the sRGB working space with reference white D65.

classmethod from_yiq(y, i, q)
Construct a Color (page 7) from three Y’IQ39 float values. Y’ can be between 0.0 and 1.0, while I and
Q can be between -1.0 and 1.0.

classmethod from_yuv(y, u, v)
Construct a Color (page 7) from three Y’UV40 float values. The Y value may be between 0.0 and 1.0.
U may be between -0.436 and 0.436, while V may be between -0.615 and 0.615.

classmethod from_yuv_bytes(y, u, v)
Construct a Color (page 7) from three Y’UV41 byte values between 0 and 255. The U and V values are
biased by 128 to prevent negative values as is typical in video applications. The Y value is biased by 16
for the same purpose.

gradient(other, steps=10, easing=<function linear>)
Returns a generator which fades between this color and other in the specified number of steps.

Parameters
• other (Color (page 7)) – The color that will end the gradient (with the color the
method is called upon starting the gradient)

• steps (int42) – The unqiue number of colors to include in the generated gradient.
Defaults to 10 if unspecified.

• easing (callable) – A function which controls the speed of the progression. If
specified, if must be a function which takes a single parameter, the number of steps, and

3.1. Color Class 11

http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/RGB_color_space
https://en.wikipedia.org/wiki/RGB_color_space
http://www.w3.org/TR/css3-color/#svg-color
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/YIQ
https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/YUV
https://docs.python.org/3.9/library/functions.html#int

Colorzero 2.0 Documentation, Release 2.0

yields a sequence of values between 0.0 (representing the start of the gradient) and 1.0
(representing the end). The default is linear() (page 18).

Returns A generator yielding steps Color (page 7) instances which fade from this color to
other.

For example:

>>> Color.repr_style = 'html'
>>> print('\n'.join(
... repr(c) for c in
... Color('red').gradient(Color('green'))
...))
Color('#ff0000')
Color('#e30e00')
Color('#c61c00')
Color('#aa2b00')
Color('#8e3900')
Color('#714700')
Color('#555500')
Color('#396400')
Color('#1c7200')
Color('#008000')

New in version 1.1.
property cmy

Returns a 3-tuple of (cyan, magenta, yellow) float values (between 0.0 and 1.0).

Note: This conversion uses the basic subtractive method which is not accurate for color reproduction
on print devices. See the Color FAQ43 for more information.

property cmyk
Returns a 4-tuple of (cyan, magenta, yellow, black) float values (between 0.0 and 1.0).

Note: This conversion uses the basic subtractive method which is not accurate for color reproduction
on print devices. See the Color FAQ44 for more information.

property hls
Returns a 3-tuple of (hue, lightness, saturation) float values (between 0.0 and 1.0).

property hsv
Returns a 3-tuple of (hue, saturation, value) float values (between 0.0 and 1.0).

property html
Returns the color as a string in HTML #RRGGBB format.

property hue
Returns the hue of the color as a Hue (page 16) instance which can be used in operations with other
Color (page 7) instances.

property lab

Returns a 3-tuple of (L*, a*, b*) float values representing the color in the CIE Lab color space45 with the
D65 standard illuminant46.

property lightness
Returns the lightness of the color as a Lightness (page 17) instance which can be used in operations
with other Color (page 7) instances.

property luma
Returns the luma47 of the color as a Luma (page 17) instance which can be used in operations with other
Color (page 7) instances.

12 Chapter 3. API - Color

http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Illuminant_D65
https://en.wikipedia.org/wiki/Luma_(video)

Colorzero 2.0 Documentation, Release 2.0

property luv
Returns a 3-tuple of (L*, u*, v*) float values representing the color in the CIE Luv color space48 with
the D65 standard illuminant49.

property rgb
Return a simple 3-tuple of (r, g, b) float values in the range 0.0 <= n <= 1.0.

Note: The Color (page 7) class can already be treated as such a 3-tuple but for the cases where you
want a straight namedtuple()50 this property is available.

property rgb565
Returns an unsigned 16-bit integer number representing the color in the RGB565 encoding.

property rgb_bytes
Returns a 3-tuple of (red, green, blue) byte values.

property saturation
Returns the saturation of the color as a Saturation (page 16) instance which can be used in operations
with other Color (page 7) instances.

property xyz

Returns a 3-tuple of (X, Y, Z) float values representing the color in the CIE 1931 color space51. The
conversion assumes the sRGB working space, with reference white D65.

property yiq
Returns a 3-tuple of (y, i, q) float values; y values can be between 0.0 and 1.0, whilst i and q values can
be between -1.0 and 1.0.

property yuv
Returns a 3-tuple of (y, u, v) float values; Y values can be between 0.0 and 1.0, U values are between
-0.436 and 0.436, and V values are between -0.615 and 0.615.

property yuv_bytes
Returns a 3-tuple of (y, u, v) byte values. Y values are biased by 16 in the result to prevent negatives. U
and V values are biased by 128 for the same purpose.

3.1. Color Class 13

https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/Illuminant_D65
https://docs.python.org/3.9/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/CIE_1931_color_space

Colorzero 2.0 Documentation, Release 2.0

3.2 Format Strings

Instances of Color (page 7) can be used in format strings to output various representations of a color, including
HTML sequences and ANSI escape sequences to color terminal output. Format specifications can be used to modify
the output to support different terminal types. For example:

>>> red = Color('red')
>>> green = Color('green')
>>> blue = Color('#47b')
>>> print(f"{red:html}")
#ff0000
>>> print(repr(f"{red}Red{red:0} Alert!"))
'\\x1b[1;31mRed\\x1b[0m Alert!'
>>> print(repr(f"The grass is {green:16m}greener{green:0}."))
'The grass is \\x1b[38;2;0;128;0mgreener\\x1b[0m.'
>>> print(repr(f"{blue:b16m}Blue skies{blue:0}"))
'\\x1b[48;2;68;119;187mBlue skies\\x1b[0m'

The format specification is one of:
• “html” - the color will be output as the common 7-character HTML represention of #RRGGBB where RR,
GG, and BB are the red, green and blue components expressed as a single hexidecimal byte

8 https://docs.python.org/3.9/library/exceptions.html#ValueError
9 https://docs.python.org/3.9/library/functions.html#float
10 https://docs.python.org/3.9/library/stdtypes.html#set
11 https://docs.python.org/3.9/library/stdtypes.html#dict
12 https://docs.python.org/3.9/library/functions.html#repr
13 https://docs.python.org/3.9/library/functions.html#repr
14 https://docs.python.org/3.9/library/functions.html#repr
15 https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit
16 https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
17 https://docs.python.org/3.9/library/stdtypes.html#str
18 https://en.wikipedia.org/wiki/Euclidean_distance
19 https://en.wikipedia.org/wiki/Color_difference#CIE76
20 https://en.wikipedia.org/wiki/Color_difference#CIE94
21 https://en.wikipedia.org/wiki/Color_difference#CIE94
22 https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
23 https://docs.python.org/3.9/library/functions.html#float
24 https://en.wikipedia.org/wiki/Color_difference
25 https://en.wikipedia.org/wiki/Just-noticeable_difference
26 https://en.wikipedia.org/wiki/CMYK_color_model
27 http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
28 https://en.wikipedia.org/wiki/CMYK_color_model
29 http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
30 https://en.wikipedia.org/wiki/HSL_and_HSV
31 https://en.wikipedia.org/wiki/HSL_and_HSV
32 https://en.wikipedia.org/wiki/Lab_color_space
33 https://en.wikipedia.org/wiki/CIELUV
34 https://en.wikipedia.org/wiki/RGB_color_space
35 https://en.wikipedia.org/wiki/RGB_color_space
36 http://www.w3.org/TR/css3-color/#svg-color
37 https://docs.python.org/3.9/library/exceptions.html#ValueError
38 https://en.wikipedia.org/wiki/CIE_1931_color_space
39 https://en.wikipedia.org/wiki/YIQ
40 https://en.wikipedia.org/wiki/YUV
41 https://en.wikipedia.org/wiki/YUV
42 https://docs.python.org/3.9/library/functions.html#int
43 http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
44 http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
45 https://en.wikipedia.org/wiki/Lab_color_space
46 https://en.wikipedia.org/wiki/Illuminant_D65
47 https://en.wikipedia.org/wiki/Luma_(video)
48 https://en.wikipedia.org/wiki/CIELUV
49 https://en.wikipedia.org/wiki/Illuminant_D65
50 https://docs.python.org/3.9/library/collections.html#collections.namedtuple
51 https://en.wikipedia.org/wiki/CIE_1931_color_space

14 Chapter 3. API - Color

Colorzero 2.0 Documentation, Release 2.0

• “css” or “cssrgb” - the color will be output in CSS’ functional notation rgb(r, g, b) where r, g, and b are decimal
representations of the red, green, and blue components in the range 0 to 255

• “csshsl” - the color will be output in CSS’ function notation hue(hdeg, s%, l%) where h, s, and l are the hue
(expressed in degrees), saturation, and lightness (expressed as percentages)

• One of the ANSI format specifications which consist of an optional foreground / background specifier (the
letters “f” or “b”) followed by an optional terminal type identifer, which is one of:

– “8” - the default, indicating only the original 8 DOS colors (black, red, green, yellow, blue, magenta,
cyan, and white) are supported. Technically, 16 foreground colors are supported via use of the “bold”
style for “intense” colors, if the terminal supports this.

– “256” - indicates the terminal supports 256 colors via 8-bit color ANSI codes52

– “16m” - indicating the terminal supports ~16 million colors via 24-bit color ANSI codes53

“0” can also be specified to indicate that the style should be reset, but this is deprecated. If specified with the optional
foreground / background specifier, “0” resets only the foreground / background color. If specified alone it resets all
styles. More formally:

<term_fore_back> ::= "" | "f" | "b"
<term_type> ::= "" | "0" | "8" | "256" | "16m"
<term> ::= <term_fore_back> <term_type>
<html> ::= "html"
<css> ::= "css" ("rgb" | "hsl")?
<format_spec> ::= <html> | <css> | <term>

New in version 1.1: The ability to output ANSI codes via format strings, and the customization of repr()54 output.
New in version 1.2: The ability to output HTML and CSS representations via format strings
Deprecated since version 2.1: Use of “0” as a reset indicator; use the new Default (page 15) singleton instead

3.3 Default Singleton

The Default (page 15) singleton exists as a color which represents the “default” for whatever environment it’s
rendered in. For example, when using in a format string for CSS, it renders as “inherit” (which is the CSS keyword
indicating that a block should inherit its color from its enclosing parent, which is the default). Alternatively, when used
with the terminal format strings (“8”, “256”, “16m”) it outputs the ANSI sequence to reset colors to the terminal’s
default (whatever that may be).
colorzero.Default = <Color Default>

The Default singleton is a special value representing the default color for whatever context it is used within.
Typically this is only useful in combination with a Style (page 19).

3.4 Manipulation Classes

These manipulation classes are used in conjunction with the standard arithmetic addition, subtraction, and multipli-
cation operators to calculate new Color (page 7) instances.
class colorzero.Red(x=0, /)

Represents the red component of a Color (page 7) for use in transformations. Instances of this class can be
constructed directly with a float value, or by querying the Color.red (page 9) attribute. Addition, subtrac-
tion, and multiplication are supported with Color (page 7) instances. For example:

52 https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
53 https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit
54 https://docs.python.org/3.9/library/functions.html#repr

3.3. Default Singleton 15

https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit
https://docs.python.org/3.9/library/functions.html#repr

Colorzero 2.0 Documentation, Release 2.0

>>> Color.from_rgb(0, 0, 0) + Red(0.5)
<Color html='#800000' rgb=(0.5, 0, 0)>
>>> Color('#f00') - Color('#900').red
<Color html='#660000' rgb=(0.4, 0, 0)>
>>> (Red(0.1) * Color('red')).red
Red(0.1)

class colorzero.Green(x=0, /)
Represents the green component of a Color (page 7) for use in transformations. Instances of this class can
be constructed directly with a float value, or by querying the Color.green (page 9) attribute. Addition,
subtraction, and multiplication are supported with Color (page 7) instances. For example:

>>> Color(0, 0, 0) + Green(0.1)
<Color html='#001a00' rgb=(0, 0.1, 0)>
>>> Color.from_yuv(1, -0.4, -0.6) - Green(1)
<Color html='#510030' rgb=(0.316098, 0, 0.187156)>
>>> (Green(0.5) * Color('white')).rgb
RGB(r=1.0, g=0.5, b=1.0)

class colorzero.Blue(x=0, /)
Represents the blue component of a Color (page 7) for use in transformations. Instances of this class can
be constructed directly with a float value, or by querying the Color.blue (page 9) attribute. Addition,
subtraction, and multiplication are supported with Color (page 7) instances. For example:

>>> Color(0, 0, 0) + Blue(0.2)
<Color html='#000033' rgb=(0, 0, 0.2)>
>>> Color.from_hls(0.5, 0.5, 1.0) - Blue(1)
<Color html='#00ff00' rgb=(0, 1, 0)>
>>> Blue(0.9) * Color('white')
<Color html='#ffffe6' rgb=(1, 1, 0.9)>

class colorzero.Hue(n=None, deg=None, rad=None)
Represents the hue of a Color (page 7) for use in transformations. Instances of this class can be constructed
directly with a float value in the range [0.0, 1.0) representing an angle around the HSL hue wheel55. As this
is a circular mapping, 0.0 and 1.0 effectively mean the same thing, i.e. out of range values will be normalized
into the range [0.0, 1.0).
The class can also be constructed with the keyword arguments deg or rad if you wish to specify the hue value
in degrees or radians instead, respectively. Instances can also be constructed by querying the Color.hue
(page 12) attribute.
Addition, subtraction, and multiplication are supported with Color (page 7) instances. For example:

>>> Color(1, 0, 0).hls
HLS(h=0.0, l=0.5, s=1.0)
>>> (Color(1, 0, 0) + Hue(deg=180)).hls
HLS(h=0.5, l=0.5, s=1.0)

Note that whilst multiplication by a Hue (page 16) doesn’t make much sense, it is still supported. However,
the circular nature of a hue value can lead to suprising effects. In particular, since 1.0 is equivalent to 0.0 the
following may be observed:

>>> (Hue(1.0) * Color.from_hls(0.5, 0.5, 1.0)).hls
HLS(h=0.0, l=0.5, s=1.0)

property deg
Returns the hue as a value in degrees with the range 0.0 <= n < 360.0.

property rad
Returns the hue as a value in radians with the range 0.0 <= n < 2π.

55 https://en.wikipedia.org/wiki/Hue

16 Chapter 3. API - Color

https://en.wikipedia.org/wiki/Hue

Colorzero 2.0 Documentation, Release 2.0

class colorzero.Saturation(x=0, /)
Represents the saturation of a Color (page 7) for use in transformations. Instances of this class can be con-
structed directly with a float value, or by querying the Color.saturation (page 13) attribute. Addition,
subtraction, and multiplication are supported with Color (page 7) instances. For example:

>>> Color(0.9, 0.9, 0.6) + Saturation(0.1)
<Color html='#ecec93' rgb=(0.925, 0.925, 0.575)>
>>> Color('red') - Saturation(1)
<Color html='#808080' rgb=(0.5, 0.5, 0.5)>
>>> Saturation(0.5) * Color('wheat')
<Color html='#e4d9c3' rgb=(0.896078, 0.85098, 0.766667)>

class colorzero.Lightness(x=0, /)
Represents the lightness of a Color (page 7) for use in transformations. Instances of this class can be con-
structed directly with a float value, or by querying the Color.lightness (page 12) attribute. Addition,
subtraction, and multiplication are supported with Color (page 7) instances. For example:

>>> Color(0, 0, 0) + Lightness(0.1)
<Color html='#1a1a1a' rgb=(0.1, 0.1, 0.1)>
>>> Color.from_rgb_bytes(0x80, 0x80, 0) - Lightness(0.2)
<Color html='#1a1a00' rgb=(0.101961, 0.101961, 0)>
>>> Lightness(0.9) * Color('wheat')
<Color html='#f0ce8e' rgb=(0.94145, 0.806785, 0.555021)>

class colorzero.Luma(x=0, /)
Represents the luma of a Color (page 7) for use in transformations. Instances of this class can be con-
structed directly with a float value, or by querying the Color.yuv.y attribute. Addition, subtraction, and
multiplication are supported with Color (page 7) instances. For example:

>>> Color(0, 0, 0) + Luma(0.1)
<Color html='#1a1a1a' rgb=(0.1, 0.1, 0.1)>
>>> Color('red') * Luma(0.5)
<Color html='#d90000' rgb=(0.8505, 0, 0)>

3.5 Difference Functions

colorzero.euclid(color1, color2)
Calculates color difference as a simple Euclidean distance56 by treating the three components as spatial dimen-
sions.

Note: This function will return considerably different values to the other difference functions. In particular,
the maximum “difference” will be

√
3 which is much smaller than the output of the CIE functions.

colorzero.cie1976(color1, color2)
Calculates color difference according to the CIE 197657 formula. Effectively this is the Euclidean formula, but
with CIE L*a*b* components instead of RGB.

colorzero.cie1994g(color1, color2)
Calculates color difference according to the CIE 199458 formula with the “textile” bias. See cie1994() for
further information.

colorzero.cie1994t(color1, color2)
Calculates color difference according to the CIE 199459 formula with the “graphics” bias. See cie1994()
for further information.

56 https://en.wikipedia.org/wiki/Euclidean_distance
57 https://en.wikipedia.org/wiki/Color_difference#CIE76
58 https://en.wikipedia.org/wiki/Color_difference#CIE94

3.5. Difference Functions 17

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Color_difference#CIE76
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIE94

Colorzero 2.0 Documentation, Release 2.0

colorzero.ciede2000(color1, color2)
Calculates color difference according to the CIEDE 200060 formula. This is the most accurate algorithm
currently implemented but also the most complex and slowest. Like CIE1994 it is largely based in CIE L*C*h*
space, but with several modifications to account for perceptual uniformity flaws.

3.6 Easing Functions

These functions can be used with the Color.gradient() (page 11) method to control the progression of the
fade between the two colors.
colorzero.linear(steps)

Linear easing function; yields steps values between 0.0 and 1.0
colorzero.ease_in(steps)

Quadratic ease-in function; yields steps values between 0.0 and 1.0
colorzero.ease_out(steps)

Quadratic ease-out function; yields steps values between 0.0 and 1.0
colorzero.ease_in_out(steps)

Quadratic ease-in-out function; yields steps values between 0.0 and 1.0

59 https://en.wikipedia.org/wiki/Color_difference#CIE94
60 https://en.wikipedia.org/wiki/Color_difference#CIEDE2000

18 Chapter 3. API - Color

https://en.wikipedia.org/wiki/Color_difference#CIEDE2000

CHAPTER

FOUR

API - STYLES

The colorzero library also includes a series of classes which act a bit like stylesheets for formatting large strings.
Different classes are used to produce different types of output, such as HTMLStyles (page 21) for HTML (and
CSS) output, or TermStyles (page 21) for ANSI terminal output.

4.1 Style Class

class colorzero.Style(fg, bg=<Color Default>)
Represents a named “style” with a foreground (fg) and background (bg) Color (page 7) (or Default
(page 15)).
If fg is an instance ofColor (page 7) it is accepted verbatim. Otherwise, aColor (page 7) will be constructed
with its value. Likewise for bg, which defaults to Default (page 15) if not specified.

4.2 Stylesheets

Stylesheets are constructed with an initial mapping of names to suitable style values, or can be constructed with a set
of keyword arguments which will be used to create the initial mapping:

>>> style = TermStyles({
... 'info': Style(Color('blue'), Default),
... 'warn': Style(Color('white'), Color('red')),
... })

The style values can either be a Style (page 19) instance, or anything that could be used to construct a Style
(page 19) instance, including a Color (page 7) instance, or valid arguments that could be used to construct a Color
(page 7) instance, or a tuple of two such values (representing the “fg” and “bg” components respectively). The value
None61 can also be specified, which will be converted to a Style (page 19) with Default (page 15) as both
foreground and background:

>>> style2 = TermStyles({
... 'info': 'blue',
... 'warn': ('white', 'red'),
... })
>>> style == style2
True

Style mappings are mutable (like an ordinary dict62), but keys must be strings, and values will be converted in the
same manner as during construction:

61 https://docs.python.org/3.9/library/constants.html#None
62 https://docs.python.org/3.9/library/stdtypes.html#dict

19

https://docs.python.org/3.9/library/constants.html#None
https://docs.python.org/3.9/library/stdtypes.html#dict

Colorzero 2.0 Documentation, Release 2.0

>>> style['error'] = 'red'
>>> style
TermStyles({'info': Style(fg=<Color html='#0000ff' rgb=(0, 0, 1)>,
bg=<Color Default>), 'warn': Style(fg=<Color html='#ffffff'
rgb=(1, 1, 1)>, bg=<Color html='#ff0000' rgb=(1, 0, 0)>), 'error':
Style(fg=<Color html='#ff0000' rgb=(1, 0, 0)>, bg=<Color Default>)})

Style mappings can be used with format strings to generate output in a variety of styles. The format spec for each
template must be the name of an entry within the mapping. For example:

>>> from colorzero import *
>>> s = TermStyles(warn='red', reset=None)
>>> f'{s:warn}Warning{s:reset}: Do not push the button!'
'\x1b[1;31m\x1b[49mWarning\x1b[0m: Do not push the button!'

It is important to bear in mind that the formatting behaviour is stateful. In other words, as the styles are substituted into
a string, the instance is keeping track of the current style. This permits descendants like HTMLStyles (page 21)
to determine when tags need closing or for TermStyles (page 21) to determine when to reset foreground or
background colors:

>>> s = HTMLStyles(warn='red', reset=None)
>>> print(f'{s:warn}This is red ')
This is red
>>> print('and this will still be red ')
and this will still be red
>>> print(f'because the span has not closed yet{s:reset}')
because the span has not closed yet

If the current foreground and background style is not Default (page 15) once formatting is complete, you may need
to call reset() before continuing to format the next string to ensure correct behaviour. The reset() method
will return whatever string would be needed to reset the current style to the default (if any):

>>> print(f'{s:warn}This is red')
This is red
>>> print(s.reset())

4.3 BaseStyles Class

class colorzero.BaseStyles(styles=None, **kwargs)
Represents a mapping of (arbitrary) names to Style (page 19) instances. This is an abstract base class;
most users will be more interested in the concrete descendants: HTMLStyles (page 21) or TermStyles
(page 21) which can be used with format strings to produce styled output.
reset()

Reset the “current” style to one with Default (page 15) foreground and background.
This is useful when one stylesheet is repeatedly used to format strings, and you wish to guarantee that the
style is reset before the next formatting operation. For example:

20 Chapter 4. API - Styles

Colorzero 2.0 Documentation, Release 2.0

4.4 StripStyles Class

class colorzero.StripStyles(styles=None, **kwargs)
A degenerate stylesheet class that always returns the empty string for all formatting operations, and the re-
set() method.

4.5 HTMLStyles Class

class colorzero.HTMLStyles(styles=None, *, tag='span', **kwargs)
A stylesheet that outputs HTML elements63 when formatting strings.
The name of the elements produced is specified by the tag argument, which defaults to “span”. Style names
must be valid CSS identifiers, or escapable to valid CSS identifiers (in practice, this means no spaces, and no
empty strings). A ValueError64 will be raised if you attempt to assign such a key.
The stylesheet() (page 21) method can be used to output a valid CSS stylesheet to be used with the
generated HTML.
stylesheet(prefix='')

A generator method that yields rules of a CSS stylesheet for all defined styles. The prefix, if given,
specifies anything that should be output before each rule such as any parent CSS selectors65.
For example:

>>> from colorzero import *
>>> styles = HTMLStyles(warn='red', info='blue', reset=None)
>>> print('\n'.join(styles.stylesheet('div.body ')))
div.body span.warn { color: rgb(255, 0, 0); background-color: inherit; }
div.body span.info { color: rgb(0, 0, 255); background-color: inherit; }
div.body span.reset { color: inherit; background-color: inherit; }

4.6 TermStyles Class

class colorzero.TermStyles(styles=None, *, term_colors='8', **kwargs)
A stylesheet that outputs ANSI escape codes66.
The term_colors argument specifies the sorts of codes produced. This can be:

• “8” - the default, indicating only the original 8 DOS colors (black, red, green, yellow, blue, magenta,
cyan, and white) are supported. Technically, 16 foreground colors are supported via use of the “bold”
style for “intense” colors, if the terminal supports this.

• “256” - indicates the terminal supports 256 colors via 8-bit color ANSI codes67

• “16m” - indicating the terminal supports ~16 million colors via 24-bit color ANSI codes68

63 https://developer.mozilla.org/en-US/docs/Glossary/Element
64 https://docs.python.org/3.9/library/exceptions.html#ValueError
65 https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
66 https://en.wikipedia.org/wiki/ANSI_escape_code
67 https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
68 https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit

4.4. StripStyles Class 21

https://developer.mozilla.org/en-US/docs/Glossary/Element
https://docs.python.org/3.9/library/exceptions.html#ValueError
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://en.wikipedia.org/wiki/ANSI_escape_code
https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit

Colorzero 2.0 Documentation, Release 2.0

22 Chapter 4. API - Styles

CHAPTER

FIVE

DEVELOPMENT

The main GitHub repository for the project can be found at:
https://github.com/waveform80/colorzero

Anyone is more than welcome to open tickets to discuss bugs, new features, or just to ask usage questions (I find this
useful for gauging what questions ought to feature in the FAQ, for example).
Even if you don’t feel up to hacking on the code, I’d love to hear suggestions from people of what you’d like the API
to look like (even if the code itself isn’t particularly pythonic, the interface should be)!

5.1 Development installation

If you wish to develop colorzero itself, it is easiest to obtain the source by cloning the GitHub repository and then use
the “develop” target of the Makefile which will install the package as a link to the cloned repository allowing in-place
development (it also builds a tags file for use with vim/emacs with Exuberant’s ctags utility). The following example
demonstrates this method within a virtual Python environment:

$ sudo apt install build-essential git \
exuberant-ctags virtualenvwrapper python-virtualenv python3-virtualenv

$ cd
$ mkvirtualenv -p /usr/bin/python3 colorzero
$ workon colorzero
(colorzero) $ git clone https://github.com/waveform80/colorzero.git
(colorzero) $ cd colorzero
(colorzero) $ make develop

To pull the latest changes from git into your clone and update your installation:

$ workon colorzero
(colorzero) $ cd ~/colorzero
(colorzero) $ git pull
(colorzero) $ make develop

To remove your installation, destroy the sandbox and the clone:

(colorzero) $ deactivate
$ rmvirtualenv colorzero
$ rm -fr ~/colorzero

23

https://github.com/waveform80/colorzero

Colorzero 2.0 Documentation, Release 2.0

5.2 Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is used for conversion of SVGs to
other formats, Graphviz is used for rendering certain charts, and TeX Live is required for building PDF output. The
following command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended texlive-xetex graphviz inkscape xindy

Once these are installed, you can use the “doc” target to build the documentation:

$ workon colorzero
(colorzero) $ cd ~/colorzero
(colorzero) $ make doc

The HTML output is written to build/html while the PDF output goes to build/latex.

5.3 Test suite

If you wish to run the colorzero test suite, follow the instructions in Development installation (page 23) above and
then make the “test” target within the sandbox:

$ workon colorzero
(colorzero) $ cd ~/colorzero
(colorzero) $ make test

24 Chapter 5. Development

CHAPTER

SIX

CHANGE LOG

6.1 Release 2.0 (2021-03-15)

• Dropped Python 2.x support. Current Python support level is 3.5 and above.
• Added html and css format specifications to the Color (page 7) class’ string-formatting capabilities.

6.2 Release 1.1 (2018-05-15)

• Added ability to generate ANSI codes with Format Strings (page 14).
• Added Color.gradient() (page 11) method.
• Exposed the various difference functions in the API (euclid() (page 17), cie1976() (page 17), etc).
• Various doc fixes and enhancements.

6.3 Release 1.0 (2018-03-10)

1.0 is the first release after breaking the library out of the picamera69 project. As this is a 1.x release, API stability
will be maintained.

69 https://github.com/waveform80/picamera

25

https://github.com/waveform80/picamera

Colorzero 2.0 Documentation, Release 2.0

26 Chapter 6. Change log

CHAPTER

SEVEN

LICENSE

Copyright 2016-2021 Dave Jones70

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUTNOT LIMITED TO, PROCUREMENTOF SUBSTITUTEGOODSOR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED ANDONANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

70 dave@waveform.org.uk

27

mailto:dave@waveform.org.uk

Colorzero 2.0 Documentation, Release 2.0

28 Chapter 7. License

INDEX

B
BaseStyles (class in colorzero), 20
Blue (class in colorzero), 16
blue (colorzero.Color attribute), 9

C
cie1976() (in module colorzero), 17
cie1994g() (in module colorzero), 17
cie1994t() (in module colorzero), 17
ciede2000() (in module colorzero), 18
cmy (colorzero.Color property), 12
cmyk (colorzero.Color property), 12
Color (class in colorzero), 7

D
Default (in module colorzero), 15
deg (colorzero.Hue property), 16
difference() (colorzero.Color method), 10

E
ease_in() (in module colorzero), 18
ease_in_out() (in module colorzero), 18
ease_out() (in module colorzero), 18
euclid() (in module colorzero), 17

F
from_cmy() (colorzero.Color class method), 10
from_cmyk() (colorzero.Color class method), 10
from_hls() (colorzero.Color class method), 11
from_hsv() (colorzero.Color class method), 11
from_lab() (colorzero.Color class method), 11
from_luv() (colorzero.Color class method), 11
from_rgb() (colorzero.Color class method), 11
from_rgb24() (colorzero.Color class method), 11
from_rgb565() (colorzero.Color class method), 11
from_rgb_bytes() (colorzero.Color class method),

11
from_string() (colorzero.Color class method), 11
from_xyz() (colorzero.Color class method), 11
from_yiq() (colorzero.Color class method), 11
from_yuv() (colorzero.Color class method), 11
from_yuv_bytes() (colorzero.Color class method),

11

G
gradient() (colorzero.Color method), 11

Green (class in colorzero), 16
green (colorzero.Color attribute), 9

H
hls (colorzero.Color property), 12
hsv (colorzero.Color property), 12
html (colorzero.Color property), 12
HTMLStyles (class in colorzero), 21
Hue (class in colorzero), 16
hue (colorzero.Color property), 12

L
lab (colorzero.Color property), 12
Lightness (class in colorzero), 17
lightness (colorzero.Color property), 12
linear() (in module colorzero), 18
Luma (class in colorzero), 17
luma (colorzero.Color property), 12
luv (colorzero.Color property), 12

R
rad (colorzero.Hue property), 16
Red (class in colorzero), 15
red (colorzero.Color attribute), 9
repr_style (colorzero.Color attribute), 9
reset() (colorzero.BaseStyles method), 20
rgb (colorzero.Color property), 13
rgb565 (colorzero.Color property), 13
rgb_bytes (colorzero.Color property), 13

S
Saturation (class in colorzero), 16
saturation (colorzero.Color property), 13
StripStyles (class in colorzero), 21
Style (class in colorzero), 19
stylesheet() (colorzero.HTMLStyles method), 21

T
TermStyles (class in colorzero), 21

X
xyz (colorzero.Color property), 13

Y
yiq (colorzero.Color property), 13
yuv (colorzero.Color property), 13
yuv_bytes (colorzero.Color property), 13

29

	Installation
	Debian installation
	Other platforms

	Getting started
	API - Color
	Color Class
	Format Strings
	Default Singleton
	Manipulation Classes
	Difference Functions
	Easing Functions

	API - Styles
	Style Class
	Stylesheets
	BaseStyles Class
	StripStyles Class
	HTMLStyles Class
	TermStyles Class

	Development
	Development installation
	Building the docs
	Test suite

	Change log
	Release 2.0 (2021-03-15)
	Release 1.1 (2018-05-15)
	Release 1.0 (2018-03-10)

	License
	Index

