
colorzero 2.0 Documentation

Dave Jones

Mar 16, 2021

Contents

1 Installation 1

2 Getting started 3

3 API 7

4 Development 19

5 Change log 21

6 License 23

Index 25

i

ii

CHAPTER 1

Installation

1.1 Raspbian installation

On Raspbian1, it is best to obtain colorzero via the apt utility:

$ sudo apt update
$ sudo apt install python3-colorzero

The usual apt upgrade method can be used to keep your installation up to date:

$ sudo apt update
$ sudo apt upgrade

To remove your installation:

$ sudo apt remove python3-colorzero

1.2 Ubuntu installation

If you are using Ubuntu2, it is probably easiest to obtain colorzero from the author’s PPA:

$ sudo add-apt-repository ppa://waveform/ppa
$ sudo apt update
$ sudo apt install python3-colorzero

The usual apt upgrade method can be used to keep your installation up to date:

$ sudo apt update
$ sudo apt upgrade

To remove your installation:
1 https://www.raspberrypi.org/downloads/raspbian/
2 https://ubuntu.com/

1

https://www.raspberrypi.org/downloads/raspbian/
https://ubuntu.com/

colorzero 2.0 Documentation

$ sudo apt remove python3-colorzero

1.3 Other platforms

On other platforms, it is probably easiest to obtain colorzero via the pip utility:

$ sudo pip3 install colorzero

To upgrade your installation:

$ sudo pip3 install -U colorzero

To remove your installation:

$ sudo pip3 remove colorzero

2 Chapter 1. Installation

CHAPTER 2

Getting started

The Color (page 7) class is the main interface provided by colorzero. It can be constructed in a large va-
riety of ways including with red, green, and blue components, “well known” color names (taken from CSS
3’s extended color keywords3), HTML color specifications, and more. A selection of valid constructors
is shown below:

>>> from colorzero import *
>>> Color('red')
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color(1.0, 0.0, 0.0)
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color(255, 0, 0)
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color('#ff0000')
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color('#f00')
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>

Internally, colorzero always represents colors as red, green, and blue values between 0.0 and 1.0. Color
(page 7) objects are tuple descendents. Crucially, this means they are immutable. Attempting to change
the red, green, or blue attributes will fail:

>>> c = Color('red')
>>> c.red
Red(1.0)
>>> c.red = 0.5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: can't set attribute

In order to manipulate a color, colorzero provides a simple series of classes which represent attributes of a
color: Red (page 15), Green (page 15), Blue (page 16), Hue (page 16), Lightness (page 17), Saturation
(page 16) and so on. You can use these classes in combination with Python’s usual mathematical
operators (addition, subtraction, multiplication, etc.) to manipulate a color. For example, continuing
the example from above:

3 https://www.w3.org/TR/css3-color/#svg-color

3

https://www.w3.org/TR/css3-color/#svg-color

colorzero 2.0 Documentation

>>> c + Green(0.1)
<Color html='#ff1a00' rgb=(1, 0.1, 0)>
>>> c = c + Green(0.5)
>>> c
<Color html='#ff8000' rgb=(1, 0.5, 0)>
>>> c.lightness
Lightness(0.5)
>>> c = c * Lightness(0.5)
>>> c
<Color html='#804000' rgb=(0.5, 0.25, 0)>

Numerous attributes are provided to enable conversion of the RGB representation to other systems:

>>> c.rgb
RGB(r=0.5, g=0.25, b=0.0)
>>> c.rgb_bytes
RGB(r=128, g=64, b=0)
>>> c.rgb565
31200
>>> c.hls
HLS(h=0.08333333333333333, l=0.25, s=1.0)
>>> c.xyz
XYZ(x=0.10647471144683732, y=0.0819048964489466, z=0.010202272707313633)
>>> c.lab
Lab(l=34.376494620040376, a=23.890819210881016, b=44.69197916172735)

Equivalent constructors exist for all these systems:

>>> Color.from_rgb(0.5, 0.25, 0.0)
<Color html='#804000' rgb=(0.5, 0.25, 0)>
>>> Color.from_rgb_bytes(128, 64, 0)
<Color html='#804000' rgb=(0.501961, 0.25098, 0)>
>>> Color.from_rgb565(31200)
<Color html='#7b3d00' rgb=(0.483871, 0.238095, 0)>
>>> Color.from_hls(*c.hls)
<Color html='#804000' rgb=(0.5, 0.25, 0)>
>>> Color.from_xyz(*c.xyz)
<Color html='#7f4000' rgb=(0.5, 0.25, 0)>
>>> Color.from_lab(*c.lab)
<Color html='#7f4000' rgb=(0.5, 0.25, 0)>

Note that some conversions lose a certain amount of precision.

The repr()4 output of Color (page 7) is relatively verbose by default, but this can be customized via
the Color.repr_style (page 9) class attribute:

>>> c = Color('red')
>>> c
<Color html="#ff0000" rgb=(1.0, 0.0, 0.0)>
>>> Color.repr_style = 'html'
>>> c
Color('#ff0000')
>>> Color.repr_style = 'rgb'
>>> c
Color(1, 0, 0)

If you have a terminal capable of color output (usually this means an actual terminal, not those integrated
4 https://docs.python.org/3.5/library/functions.html#repr

4 Chapter 2. Getting started

https://docs.python.org/3.5/library/functions.html#repr

colorzero 2.0 Documentation

into applications like IDLE, Thonny, etc.), you can also preview colors with this facility (the output below
shows the ANSI codes produced, but the documentation system won’t reproduce the colored output):

>>> Color.repr_style = 'term256'
>>> c
<Color ### rgb=(1, 0, 0)>
>>> repr(c)
'<Color \x1b[38;5;9m###\x1b[0m rgb=(1, 0, 0)>'
>>> Color.repr_style = 'term16m'
>>> c
<Color ### rgb=(1, 0, 0)>
>>> repr(c)
'<Color \x1b[38;2;255;0;0m###\x1b[0m rgb=(1, 0, 0)>'

These ANSI codes can also be generated by using colors with str.format()5. For example:

>>> '{c:16m}Red{c:0} Alert!'.format(c=Color('red'))
'\x1b[38;2;255;0;0mRed\x1b[0m Alert!'

See Format Strings (page 14) for more information.

A method (gradient() (page 12)) is provided to generate gradients which fade from one color to another.
The result is a generator, which must be iterated over if you want all the results:

>>> Color.repr_style = 'term16m'
>>> for c in Color('red').gradient(Color('green')):
... print(repr(c))
...
<Color ### rgb=(1, 0, 0)>
<Color ### rgb=(0.888889, 0.0557734, 0)>
<Color ### rgb=(0.777778, 0.111547, 0)>
<Color ### rgb=(0.666667, 0.16732, 0)>
<Color ### rgb=(0.555556, 0.223094, 0)>
<Color ### rgb=(0.444444, 0.278867, 0)>
<Color ### rgb=(0.333333, 0.334641, 0)>
<Color ### rgb=(0.222222, 0.390414, 0)>
<Color ### rgb=(0.111111, 0.446187, 0)>
<Color ### rgb=(0, 0.501961, 0)>

In a color-capable terminal, the “###” above will appear to fade between the two specified colors.

Methods are also provided to compare colors for similarity. The simplest algorithm (and the default) is
“euclid” which calculates the difference as the distance between them by treating the r, g, b components
as coordinates in a 3-dimensional space. The same color will have a distance of 0.0, whilst the largest
possible difference is

√
3 (≈ 1.732):

>>> c1 = Color('red')
>>> c2 = Color('green')
>>> c3 = c1 * Lightness(0.9)
>>> c1.difference(c2, 'euclid')
1.1189122525867927
>>> c1.difference(c2)
1.1189122525867927
>>> c1.difference(c3)
0.09999999999999998

Various Delta-E6 algorithms (CIE1976, CIE1994, and CIEDE2000) are also provided. In these systems,
2.3 is considered a “just noticeable difference”:

5 https://docs.python.org/3.5/library/stdtypes.html#str.format
6 https://en.wikipedia.org/wiki/Color_difference

5

https://docs.python.org/3.5/library/stdtypes.html#str.format
https://en.wikipedia.org/wiki/Color_difference

colorzero 2.0 Documentation

>>> c1.difference(c2, 'cie1976')
133.10729836196307
>>> c1.difference(c3, 'cie1976')
9.60280542204272
>>> c1.difference(c2, 'cie1994g')
50.97596644678241
>>> c1.difference(c3, 'cie1994g')
5.484832836355026
>>> c1.difference(c2, 'ciede2000')
72.18229138962074
>>> c1.difference(c3, 'ciede2000')
5.490813507834904

These algorithms are also available as straight-forward functions:

>>> cie1976(c1, c2)
133.10729836196307
>>> ciede2000(c1, c3)
5.490813507834904

6 Chapter 2. Getting started

CHAPTER 3

API

The colorzero library includes a comprehensive Color (page 7) class which is capable of converting
between numerous color representations and calculating color differences. Various ancillary classes can
be used to manipulate aspects of a color.

3.1 Color Class

This the primary class in the package, and often the only class you’ll need or want to interact with.
It has an extremely flexible constructor, along with numerous explicit constructors, and attributes for
conversion to other color systems.

class colorzero.Color
The Color class is a tuple which represents a color as linear red, green, and blue components.

The class has a flexible constructor which allows you to create an instance from any built-in color
system. There are also explicit constructors for every known system that can convert (directly or
indirectly) to linear RGB. For example, an instance of Color (page 7) can be constructed in any
of the following ways:

>>> Color('#f00')
<Color html='#ff0000' rgb=(1, 0, 0)>
>>> Color('green')
<Color html='#008000' rgb=(0.0, 0.501961, 0.0)>
>>> Color(0, 0, 1)
<Color html='#0000ff' rgb=(0, 0, 1)>
>>> Color(h=0, s=1, v=0.5)
<Color html='#800000' rgb=(0.5, 0, 0)>
>>> Color(y=0.4, u=-0.05, v=0.615)
<Color html='#ff104c' rgb=(1, 0.0626644, 0.298394)>

The specific forms that the default constructor will accept are enumerated below:

7

colorzero 2.0 Documentation

Style Description
Single scalar parameter Equivalent to calling Color.from_string()

(page 12), or Color.from_rgb24() (page 11).
Three positional parameters or a 3-
tuple with no field names

Equivalent to calling Color.from_rgb()
(page 11) if all three parameters are between
0.0 and 1.0, or Color.from_rgb_bytes()
(page 12) otherwise.

Three named parameters, or a 3-tuple
with fields “r”, “g”, “b”
Three named parameters, or a 3-tuple
with fields “red”, “green”, “blue”
Three named parameters, or a 3-tuple
with fields “y”, “u”, “v”

Equivalent to calling Color.from_yuv()
(page 12) if “y” is between 0.0 and 1.0, “u” is
between -0.436 and 0.436, and “v” is between -
0.615 and 0.615, or Color.from_yuv_bytes()
(page 12) otherwise.

Three named parameters, or a 3-tuple
with fields “y”, “i”, “q”

Equivalent to calling Color.from_yiq()
(page 12).

Three named parameters, or a 3-tuple
with fields “h”, “l”, “s”

Equivalent to calling Color.from_hls()
(page 11).

Three named parameters, or a 3-tuple
with fields “hue”, “lightness”, “satura-
tion”
Three named parameters, or a 3-tuple
with fields “h”, “s”, “v”

Equivalent to calling Color.from_hsv()
(page 11)

Three named parameters, or a 3-tuple
with fields “hue”, “saturation”, “value”
Three named parameters, or a 3-tuple
with fields “x”, “y”, “z”

Equivalent to calling Color.from_xyz()
(page 12)

Three named parameters, or a 3-tuple
with fields “l”, “a”, “b”

Equivalent to calling Color.from_lab()
(page 11)

Three named parameters, or a 3-tuple
with fields “l”, “u”, “v”

Equivalent to calling Color.from_luv()
(page 11)

If the constructor parameters do not conform to any of the variants in the table above, a
ValueError7 will be raised.

Internally, the color is always represented as 3 float8 values corresponding to the red, green, and
blue components of the color. These values take a value from 0.0 to 1.0 (least to full intensity).
The class provides several attributes which can be used to convert one color system into another:

>>> Color('#f00').hls
HLS(h=0.0, l=0.5, s=1.0)
>>> Color.from_string('green').hue
Hue(deg=120.0)
>>> Color.from_rgb_bytes(0, 0, 255).yuv
YUV(y=0.114, u=0.436, v=-0.10001426533523537)

As Color (page 7) derives from tuple, instances are immutable. While this provides the advantage
that they can be used in a set9 or as keys of a dict10, it does mean that colors themselves cannot
be directly manipulated (e.g. by setting the red component).

However, several auxilliary classes in the module provide the ability to perform simple transforma-
tions of colors via operators which produce a new Color (page 7) instance. For example, you can
add, subtract, and multiply colors directly:

7 https://docs.python.org/3.5/library/exceptions.html#ValueError
8 https://docs.python.org/3.5/library/functions.html#float
9 https://docs.python.org/3.5/library/stdtypes.html#set

10 https://docs.python.org/3.5/library/stdtypes.html#dict

8 Chapter 3. API

https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/stdtypes.html#dict

colorzero 2.0 Documentation

>>> Color('red') + Color('blue')
<Color html='#ff00ff' rgb=(1, 0, 1)>
>>> Color('magenta') - Color('red')
<Color html='#0000ff' rgb=(0, 0, 1)>

Values are clipped to ensure the resulting color is still valid:

>>> Color('#ff00ff') + Color('#ff0000')
<Color html='#ff00ff' rgb=(1, 0, 1)>

You can wrap numbers in constructors like Red (page 15) (or obtain elements of existing colors),
then add, subtract, or multiply them with a Color (page 7):

>>> Color('red') - Red(0.5)
<Color html='#800000' rgb=(0.5, 0, 0)>
>>> Color('green') + Color('grey').red
<Color html='#808000' rgb=(0.501961, 0.501961, 0)>

You can even manipulate non-primary attributes like hue, saturation, and lightness with standard
addition, subtraction or multiplication operators:

>>> Color.from_hls(0.5, 0.5, 1.0)
<Color html='#00ffff' rgb=(0, 1, 1)>
>>> Color.from_hls(0.5, 0.5, 1.0) * Lightness(0.8)
<Color html='#00cccc' rgb=(0, 0.8, 0.8)>
>>> (Color.from_hls(0.5, 0.5, 1.0) * Lightness(0.8)).hls
HLS(h=0.5, l=0.4, s=1.0)

In the last example above, a Color (page 7) instance is constructed from HLS (hue, lightness,
saturation) values with a lightness of 0.5. This is multiplied by a Lightness (page 17) a value of
0.8 which constructs a new Color (page 7) with the same hue and saturation, but a lightness of
0.4 (0.8 × 0.5).

If an instance is converted to a string (with str()) it will return a string containing the 7-character
HTML code for the color (e.g. “#ff0000” for red). As can be seen in the examples above, a similar
representation is included for the output of repr()11. The output of repr()12 can be customized
by assigning values to Color.repr_style (page 9).

red
Return the red value as a Red (page 15) instance

green
Return the green value as a Green (page 15) instance

blue
Return the blue value as a Blue (page 16) instance

repr_style
Specifies the style of output returned when using repr()13 against a Color (page 7) instance.
This is an attribute of the class, not of instances. For example:

>>> Color('#f00')
<Color html='#ff0000' rgb=(1, 0, 0)>
>>> Color.repr_style = 'html'
>>> Color('#f00')
Color('#ff0000')

The following values are valid:
11 https://docs.python.org/3.5/library/functions.html#repr
12 https://docs.python.org/3.5/library/functions.html#repr
13 https://docs.python.org/3.5/library/functions.html#repr

3.1. Color Class 9

https://docs.python.org/3.5/library/functions.html#repr
https://docs.python.org/3.5/library/functions.html#repr
https://docs.python.org/3.5/library/functions.html#repr

colorzero 2.0 Documentation

• ‘default’ - The style shown above

• ‘term16m’ - Similar to the default style, but instead of the HTML style being included, a
swatch previewing the color is output. Note that the terminal must support 24-bit color
ANSI codes14 for this to work.

• ‘term256’ - Similar to ‘termtrue’, but uses the closest color that can be found in the
standard 256-color xterm palette. Note that the terminal must support 8-bit color ANSI
codes15 for this to work.

• ‘html’ - Outputs a valid Color (page 7) constructor using the HTML style, e.g.
Color('#ff99bb')

• ‘rgb’ - Outputs a valid Color (page 7) constructor using the floating point RGB values,
e.g. Color(1, 0.25, 0)

difference(other, method=’euclid’)
Determines the difference between this color and other using the specified method.

Parameters

• other (Color (page 7)) – The color to compare this color to.

• method (str16) – The algorithm to use in the comparison. Valid values are:

– ’euclid’ - This is the default method. Calculate the Euclidian distance17.
This is by far the fastest method, but also the least accurate in terms of
human perception.

– ’cie1976’ - Use the CIE 197618 formula for calculating the difference between
two colors in CIE Lab space.

– ’cie1994g’ - Use the CIE 199419 formula with the “graphic arts” bias for
calculating the difference.

– ’cie1994t’ - Use the CIE 199420 forumula with the “textiles” bias for calcu-
lating the difference.

– ’ciede2000’ - Use the CIEDE 200021 formula for calculating the difference.

Returns A float22 indicating how different the two colors are. Note that the Eu-
clidian distance will be significantly different to the other calculations; effectively
this just measures the distance between the two colors by treating them as coor-
dinates in a three dimensional Euclidian space. All other methods are means of
calculating a Delta E23 value in which 2.3 is considered a just-noticeable differ-
ence24 (JND).

For example:

>>> Color('red').difference(Color('red'))
0.0
>>> Color('red').difference(Color('red'), method='cie1976')
0.0
>>> Color('red').difference(Color('#900'))
0.4

(continues on next page)

14 https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit
15 https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
16 https://docs.python.org/3.5/library/stdtypes.html#str
17 https://en.wikipedia.org/wiki/Euclidean_distance
18 https://en.wikipedia.org/wiki/Color_difference#CIE76
19 https://en.wikipedia.org/wiki/Color_difference#CIE94
20 https://en.wikipedia.org/wiki/Color_difference#CIE94
21 https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
22 https://docs.python.org/3.5/library/functions.html#float
23 https://en.wikipedia.org/wiki/Color_difference
24 https://en.wikipedia.org/wiki/Just-noticeable_difference

10 Chapter 3. API

https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit
https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit
https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
https://docs.python.org/3.5/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Color_difference#CIE76
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
https://docs.python.org/3.5/library/functions.html#float
https://en.wikipedia.org/wiki/Color_difference
https://en.wikipedia.org/wiki/Just-noticeable_difference
https://en.wikipedia.org/wiki/Just-noticeable_difference

colorzero 2.0 Documentation

(continued from previous page)

>>> Color('red').difference(Color('#900'), method='cie1976')
40.17063087142142
>>> Color('red').difference(Color('#900'), method='ciede2000')
21.078146289272155
>>> Color('red').difference(Color('blue'))
1.4142135623730951
>>> Color('red').difference(Color('blue'), method='cie1976')
176.31403908880046

Note: Instead of using this method, you may wish to simply use the various difference
functions (euclid() (page 17), cie1976() (page 17), etc.) directly.

classmethod from_cmy(c, m, y)
Construct a Color (page 7) from CMY25 (cyan, magenta, yellow) floats between 0.0 and 1.0.

Note: This conversion uses the basic subtractive method which is not accurate for color
reproduction on print devices. See the Color FAQ26 for more information.

classmethod from_cmyk(c, m, y, k)
Construct a Color (page 7) from CMYK27 (cyan, magenta, yellow, black) floats between 0.0
and 1.0.

Note: This conversion uses the basic subtractive method which is not accurate for color
reproduction on print devices. See the Color FAQ28 for more information.

classmethod from_hls(h, l, s)
Construct a Color (page 7) from HLS29 (hue, lightness, saturation) floats between 0.0 and
1.0.

classmethod from_hsv(h, s, v)
Construct a Color (page 7) from HSV30 (hue, saturation, value) floats between 0.0 and 1.0.

classmethod from_lab(l, a, b)
Construct a Color (page 7) from (L*, a*, b*) float values representing a color in the CIE Lab
color space31. The conversion assumes the sRGB working space with reference white D65.

classmethod from_luv(l, u, v)
Construct a Color (page 7) from (L*, u*, v*) float values representing a color in the CIE Luv
color space32. The conversion assumes the sRGB working space with reference white D65.

classmethod from_rgb(r, g, b)
Construct a Color (page 7) from three linear RGB33 float values between 0.0 and 1.0.

classmethod from_rgb24(n)
Construct a Color (page 7) from an unsigned 24-bit integer number of the form
0x00BBGGRR.

25 https://en.wikipedia.org/wiki/CMYK_color_model
26 http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
27 https://en.wikipedia.org/wiki/CMYK_color_model
28 http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
29 https://en.wikipedia.org/wiki/HSL_and_HSV
30 https://en.wikipedia.org/wiki/HSL_and_HSV
31 https://en.wikipedia.org/wiki/Lab_color_space
32 https://en.wikipedia.org/wiki/CIELUV
33 https://en.wikipedia.org/wiki/RGB_color_space

3.1. Color Class 11

https://en.wikipedia.org/wiki/CMYK_color_model
http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
https://en.wikipedia.org/wiki/CMYK_color_model
http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/RGB_color_space

colorzero 2.0 Documentation

classmethod from_rgb565(n)
Construct a Color (page 7) from an unsigned 16-bit integer number in RGB565 format.

classmethod from_rgb_bytes(r, g, b)
Construct a Color (page 7) from three RGB34 byte values between 0 and 255.

classmethod from_string(s)
Construct a Color (page 7) from a 4 or 7 character CSS-like representation (e.g. “#f00” or
“#ff0000” for red), or from one of the named colors (e.g. “green” or “wheat”) from the CSS
standard35. Any other string format will result in a ValueError36.

classmethod from_xyz(x, y, z)
Construct a Color (page 7) from (X, Y, Z) float values representing a color in the CIE 1931
color space37. The conversion assumes the sRGB working space with reference white D65.

classmethod from_yiq(y, i, q)
Construct a Color (page 7) from three Y’IQ38 float values. Y’ can be between 0.0 and 1.0,
while I and Q can be between -1.0 and 1.0.

classmethod from_yuv(y, u, v)
Construct a Color (page 7) from three Y’UV39 float values. The Y value may be between 0.0
and 1.0. U may be between -0.436 and 0.436, while V may be between -0.615 and 0.615.

classmethod from_yuv_bytes(y, u, v)
Construct a Color (page 7) from three Y’UV40 byte values between 0 and 255. The U and V
values are biased by 128 to prevent negative values as is typical in video applications. The Y
value is biased by 16 for the same purpose.

gradient(other, steps=10, easing=<function linear>)
Returns a generator which fades between this color and other in the specified number of steps.

Parameters

• other (Color (page 7)) – The color that will end the gradient (with the color
the method is called upon starting the gradient)

• steps (int41) – The unqiue number of colors to include in the generated gra-
dient. Defaults to 10 if unspecified.

• easing (callable) – A function which controls the speed of the progression. If
specified, if must be a function which takes a single parameter, the number of
steps, and yields a sequence of values between 0.0 (representing the start of the
gradient) and 1.0 (representing the end). The default is linear() (page 18).

Returns A generator yielding steps Color (page 7) instances which fade from this
color to other.

For example:

>>> Color.repr_style = 'html'
>>> print('\n'.join(
... repr(c) for c in
... Color('red').gradient(Color('green'))
...))
Color('#ff0000')
Color('#e30e00')
Color('#c61c00')

(continues on next page)

34 https://en.wikipedia.org/wiki/RGB_color_space
35 http://www.w3.org/TR/css3-color/#svg-color
36 https://docs.python.org/3.5/library/exceptions.html#ValueError
37 https://en.wikipedia.org/wiki/CIE_1931_color_space
38 https://en.wikipedia.org/wiki/YIQ
39 https://en.wikipedia.org/wiki/YUV
40 https://en.wikipedia.org/wiki/YUV
41 https://docs.python.org/3.5/library/functions.html#int

12 Chapter 3. API

https://en.wikipedia.org/wiki/RGB_color_space
http://www.w3.org/TR/css3-color/#svg-color
http://www.w3.org/TR/css3-color/#svg-color
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/YIQ
https://en.wikipedia.org/wiki/YUV
https://en.wikipedia.org/wiki/YUV
https://docs.python.org/3.5/library/functions.html#int

colorzero 2.0 Documentation

(continued from previous page)

Color('#aa2b00')
Color('#8e3900')
Color('#714700')
Color('#555500')
Color('#396400')
Color('#1c7200')
Color('#008000')

New in version 1.1.

cmy
Returns a 3-tuple of (cyan, magenta, yellow) float values (between 0.0 and 1.0).

Note: This conversion uses the basic subtractive method which is not accurate for color
reproduction on print devices. See the Color FAQ42 for more information.

cmyk
Returns a 4-tuple of (cyan, magenta, yellow, black) float values (between 0.0 and 1.0).

Note: This conversion uses the basic subtractive method which is not accurate for color
reproduction on print devices. See the Color FAQ43 for more information.

hls
Returns a 3-tuple of (hue, lightness, saturation) float values (between 0.0 and 1.0).

hsv
Returns a 3-tuple of (hue, saturation, value) float values (between 0.0 and 1.0).

html
Returns the color as a string in HTML #RRGGBB format.

hue
Returns the hue of the color as a Hue (page 16) instance which can be used in operations with
other Color (page 7) instances.

lab
Returns a 3-tuple of (L*, a*, b*) float values representing the color in the CIE Lab color
space44 with the D65 standard illuminant45.

lightness
Returns the lightness of the color as a Lightness (page 17) instance which can be used in
operations with other Color (page 7) instances.

luma
Returns the luma46 of the color as a Luma (page 17) instance which can be used in operations
with other Color (page 7) instances.

luv
Returns a 3-tuple of (L*, u*, v*) float values representing the color in the CIE Luv color
space47 with the D65 standard illuminant48.

rgb
Return a simple 3-tuple of (r, g, b) float values in the range 0.0 <= n <= 1.0.

42 http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
43 http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
44 https://en.wikipedia.org/wiki/Lab_color_space
45 https://en.wikipedia.org/wiki/Illuminant_D65
46 https://en.wikipedia.org/wiki/Luma_(video)
47 https://en.wikipedia.org/wiki/CIELUV
48 https://en.wikipedia.org/wiki/Illuminant_D65

3.1. Color Class 13

http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
http://poynton.ca/notes/colour_and_gamma/ColorFAQ.html#RTFToC24
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Lab_color_space
https://en.wikipedia.org/wiki/Illuminant_D65
https://en.wikipedia.org/wiki/Luma_(video)
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/Illuminant_D65

colorzero 2.0 Documentation

Note: The Color (page 7) class can already be treated as such a 3-tuple but for the cases
where you want a straight namedtuple()49 this property is available.

rgb565
Returns an unsigned 16-bit integer number representing the color in the RGB565 encoding.

rgb_bytes
Returns a 3-tuple of (red, green, blue) byte values.

saturation
Returns the saturation of the color as a Saturation (page 16) instance which can be used in
operations with other Color (page 7) instances.

xyz
Returns a 3-tuple of (X, Y, Z) float values representing the color in the CIE 1931 color space50.
The conversion assumes the sRGB working space, with reference white D65.

yiq
Returns a 3-tuple of (y, i, q) float values; y values can be between 0.0 and 1.0, whilst i and q
values can be between -1.0 and 1.0.

yuv
Returns a 3-tuple of (y, u, v) float values; Y values can be between 0.0 and 1.0, U values are
between -0.436 and 0.436, and V values are between -0.615 and 0.615.

yuv_bytes
Returns a 3-tuple of (y, u, v) byte values. Y values are biased by 16 in the result to prevent
negatives. U and V values are biased by 128 for the same purpose.

3.2 Format Strings

Instances of Color (page 7) can be used in format strings to output various representations of a color,
including HTML sequences and ANSI escape sequences to color terminal output. Format specifications
can be used to modify the output to support different terminal types. For example:

>>> red = Color('red')
>>> green = Color('green')
>>> blue = Color('#47b')
>>> print("{red:html}".format(red=red))
#ff0000
>>> print(repr("{red}Red{red:0} Alert!".format(red=red)))
'\\x1b[1;31mRed\\x1b[0m Alert!'
>>> print(repr("The grass is {green:16m}greener{green:0}.".format(
... green=green)))
'The grass is \\x1b[38;2;0;128;0mgreener\\x1b[0m.'
>>> print(repr("{blue:b16m}Blue skies{blue:0}".format(blue=blue)))
'\\x1b[48;2;68;119;187mBlue skies\\x1b[0m'

The format specification is one of:

• “html” - the color will be output as the common 7-character HTML represention of #RRGGBB
where RR, GG, and BB are the red, green and blue components expressed as a single hexidecimal
byte

• “css” or “cssrgb” - the color will be output in CSS’ functional notation rgb(r, g, b) where r, g, and
b are decimal representations of the red, green, and blue components in the range 0 to 255

49 https://docs.python.org/3.5/library/collections.html#collections.namedtuple
50 https://en.wikipedia.org/wiki/CIE_1931_color_space

14 Chapter 3. API

https://docs.python.org/3.5/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/CIE_1931_color_space

colorzero 2.0 Documentation

• “csshsl” - the color will be output in CSS’ function notation hue(hdeg, s%, l%) where h, s, and l
are the hue (expressed in degrees), saturation, and lightness (expressed as percentages)

• One of the ANSI format specifications which consist of an optional foreground / background spec-
ifier (the letters “f” or “b”) followed by an optional terminal type identifer, which is one of:

– “8” - the default, indicating only the original 8 DOS colors are supported (technically, 16
foreground colors are supported via use of the “bold” style for “intense” colors)

– “256” - indicates the terminal supports 256 colors via 8-bit color ANSI codes51

– “16m” - indicating the terminal supports ~16 million colors via 24-bit color ANSI codes52

Alternately, “0” can be specified indicating that the style should be reset. If specified with the optional
foreground / background specifier, “0” resets only the foreground / background color. If specified alone
it resets all styles. More formally:

<term_fore_back> ::= "" | "f" | "b"
<term_type> ::= "" | "0" | "8" | "256" | "16m"
<term> ::= <term_fore_back> <term_type>
<html> ::= "html"
<css> ::= "css" ("rgb" | "hsl")?
<format_spec> ::= <html> | <css> | <term>

New in version 1.1: The ability to output ANSI codes via format strings, and the customization of
repr()53 output.

New in version 1.2: The ability to output HTML and CSS representations via format strings

3.3 Manipulation Classes

These manipulation classes are used in conjunction with the standard arithmetic addition, subtraction,
and multiplication operators to calculate new Color (page 7) instances.

class colorzero.Red
Represents the red component of a Color (page 7) for use in transformations. Instances of this
class can be constructed directly with a float value, or by querying the Color.red (page 9) at-
tribute. Addition, subtraction, and multiplication are supported with Color (page 7) instances.
For example:

>>> Color.from_rgb(0, 0, 0) + Red(0.5)
<Color html='#800000' rgb=(0.5, 0, 0)>
>>> Color('#f00') - Color('#900').red
<Color html='#660000' rgb=(0.4, 0, 0)>
>>> (Red(0.1) * Color('red')).red
Red(0.1)

class colorzero.Green
Represents the green component of a Color (page 7) for use in transformations. Instances of this
class can be constructed directly with a float value, or by querying the Color.green (page 9)
attribute. Addition, subtraction, and multiplication are supported with Color (page 7) instances.
For example:

>>> Color(0, 0, 0) + Green(0.1)
<Color html='#001a00' rgb=(0, 0.1, 0)>
>>> Color.from_yuv(1, -0.4, -0.6) - Green(1)

(continues on next page)

51 https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
52 https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit
53 https://docs.python.org/3.5/library/functions.html#repr

3.3. Manipulation Classes 15

https://en.wikipedia.org/wiki/ANSI_escape_code#8-bit
https://en.wikipedia.org/wiki/ANSI_escape_code#24-bit
https://docs.python.org/3.5/library/functions.html#repr

colorzero 2.0 Documentation

(continued from previous page)

<Color html='#510030' rgb=(0.316098, 0, 0.187156)>
>>> (Green(0.5) * Color('white')).rgb
RGB(r=1.0, g=0.5, b=1.0)

class colorzero.Blue
Represents the blue component of a Color (page 7) for use in transformations. Instances of this
class can be constructed directly with a float value, or by querying the Color.blue (page 9)
attribute. Addition, subtraction, and multiplication are supported with Color (page 7) instances.
For example:

>>> Color(0, 0, 0) + Blue(0.2)
<Color html='#000033' rgb=(0, 0, 0.2)>
>>> Color.from_hls(0.5, 0.5, 1.0) - Blue(1)
<Color html='#00ff00' rgb=(0, 1, 0)>
>>> Blue(0.9) * Color('white')
<Color html='#ffffe6' rgb=(1, 1, 0.9)>

class colorzero.Hue
Represents the hue of a Color (page 7) for use in transformations. Instances of this class can be
constructed directly with a float value in the range [0.0, 1.0) representing an angle around the HSL
hue wheel54. As this is a circular mapping, 0.0 and 1.0 effectively mean the same thing, i.e. out of
range values will be normalized into the range [0.0, 1.0).

The class can also be constructed with the keyword arguments deg or rad if you wish to specify the
hue value in degrees or radians instead, respectively. Instances can also be constructed by querying
the Color.hue (page 13) attribute.

Addition, subtraction, and multiplication are supported with Color (page 7) instances. For exam-
ple:

>>> Color(1, 0, 0).hls
HLS(h=0.0, l=0.5, s=1.0)
>>> (Color(1, 0, 0) + Hue(deg=180)).hls
HLS(h=0.5, l=0.5, s=1.0)

Note that whilst multiplication by a Hue (page 16) doesn’t make much sense, it is still supported.
However, the circular nature of a hue value can lead to suprising effects. In particular, since 1.0 is
equivalent to 0.0 the following may be observed:

>>> (Hue(1.0) * Color.from_hls(0.5, 0.5, 1.0)).hls
HLS(h=0.0, l=0.5, s=1.0)

deg
Returns the hue as a value in degrees with the range 0.0 <= n < 360.0.

rad
Returns the hue as a value in radians with the range 0.0 <= n < 2π.

class colorzero.Saturation
Represents the saturation of a Color (page 7) for use in transformations. Instances of this class
can be constructed directly with a float value, or by querying the Color.saturation (page 14)
attribute. Addition, subtraction, and multiplication are supported with Color (page 7) instances.
For example:

>>> Color(0.9, 0.9, 0.6) + Saturation(0.1)
<Color html='#ecec93' rgb=(0.925, 0.925, 0.575)>
>>> Color('red') - Saturation(1)

(continues on next page)

54 https://en.wikipedia.org/wiki/Hue

16 Chapter 3. API

https://en.wikipedia.org/wiki/Hue
https://en.wikipedia.org/wiki/Hue

colorzero 2.0 Documentation

(continued from previous page)

<Color html='#808080' rgb=(0.5, 0.5, 0.5)>
>>> Saturation(0.5) * Color('wheat')
<Color html='#e4d9c3' rgb=(0.896078, 0.85098, 0.766667)>

class colorzero.Lightness
Represents the lightness of a Color (page 7) for use in transformations. Instances of this class
can be constructed directly with a float value, or by querying the Color.lightness (page 13)
attribute. Addition, subtraction, and multiplication are supported with Color (page 7) instances.
For example:

>>> Color(0, 0, 0) + Lightness(0.1)
<Color html='#1a1a1a' rgb=(0.1, 0.1, 0.1)>
>>> Color.from_rgb_bytes(0x80, 0x80, 0) - Lightness(0.2)
<Color html='#1a1a00' rgb=(0.101961, 0.101961, 0)>
>>> Lightness(0.9) * Color('wheat')
<Color html='#f0ce8e' rgb=(0.94145, 0.806785, 0.555021)>

class colorzero.Luma
Represents the luma of a Color (page 7) for use in transformations. Instances of this class can
be constructed directly with a float value, or by querying the Color.yuv.y attribute. Addition,
subtraction, and multiplication are supported with Color (page 7) instances. For example:

>>> Color(0, 0, 0) + Luma(0.1)
<Color html='#1a1a1a' rgb=(0.1, 0.1, 0.1)>
>>> Color('red') * Luma(0.5)
<Color html='#d90000' rgb=(0.8505, 0, 0)>

3.4 Difference Functions

colorzero.euclid(color1, color2)
Calculates color difference as a simple Euclidean distance55 by treating the three components as
spatial dimensions.

Note: This function will return considerably different values to the other difference functions.
In particular, the maximum “difference” will be

√
3 which is much smaller than the output of the

CIE functions.

colorzero.cie1976(color1, color2)
Calculates color difference according to the CIE 197656 formula. Effectively this is the Euclidean
formula, but with CIE L*a*b* components instead of RGB.

colorzero.cie1994g(color1, color2)
Calculates color difference according to the CIE 199457 formula with the “textile” bias. See
cie1994() for further information.

colorzero.cie1994t(color1, color2)
Calculates color difference according to the CIE 199458 formula with the “graphics” bias. See
cie1994() for further information.

colorzero.ciede2000(color1, color2)
Calculates color difference according to the CIEDE 200059 formula. This is the most accurate

55 https://en.wikipedia.org/wiki/Euclidean_distance
56 https://en.wikipedia.org/wiki/Color_difference#CIE76
57 https://en.wikipedia.org/wiki/Color_difference#CIE94
58 https://en.wikipedia.org/wiki/Color_difference#CIE94
59 https://en.wikipedia.org/wiki/Color_difference#CIEDE2000

3.4. Difference Functions 17

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Color_difference#CIE76
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIE94
https://en.wikipedia.org/wiki/Color_difference#CIEDE2000

colorzero 2.0 Documentation

algorithm currently implemented but also the most complex and slowest. Like CIE1994 it is largely
based in CIE L*C*h* space, but with several modifications to account for perceptual uniformity
flaws.

3.5 Easing Functions

These functions can be used with the Color.gradient() (page 12) method to control the progression
of the fade between the two colors.

colorzero.linear(steps)
Linear easing function; yields steps values between 0.0 and 1.0

colorzero.ease_in(steps)
Quadratic ease-in function; yields steps values between 0.0 and 1.0

colorzero.ease_out(steps)
Quadratic ease-out function; yields steps values between 0.0 and 1.0

colorzero.ease_in_out(steps)
Quadratic ease-in-out function; yields steps values between 0.0 and 1.0

18 Chapter 3. API

CHAPTER 4

Development

The main GitHub repository for the project can be found at:

https://github.com/waveform80/colorzero

Anyone is more than welcome to open tickets to discuss bugs, new features, or just to ask usage questions
(I find this useful for gauging what questions ought to feature in the FAQ, for example).

Even if you don’t feel up to hacking on the code, I’d love to hear suggestions from people of what you’d
like the API to look like (even if the code itself isn’t particularly pythonic, the interface should be)!

4.1 Development installation

If you wish to develop colorzero itself, it is easiest to obtain the source by cloning the GitHub reposi-
tory and then use the “develop” target of the Makefile which will install the package as a link to the
cloned repository allowing in-place development (it also builds a tags file for use with vim/emacs with
Exuberant’s ctags utility). The following example demonstrates this method within a virtual Python
environment:

$ sudo apt install build-essential git \
exuberant-ctags virtualenvwrapper python-virtualenv python3-virtualenv

$ cd
$ mkvirtualenv -p /usr/bin/python3 colorzero
$ workon colorzero
(colorzero) $ git clone https://github.com/waveform80/colorzero.git
(colorzero) $ cd colorzero
(colorzero) $ make develop

To pull the latest changes from git into your clone and update your installation:

$ workon colorzero
(colorzero) $ cd ~/colorzero
(colorzero) $ git pull
(colorzero) $ make develop

To remove your installation, destroy the sandbox and the clone:

19

https://github.com/waveform80/colorzero

colorzero 2.0 Documentation

(colorzero) $ deactivate
$ rmvirtualenv colorzero
$ rm -fr ~/colorzero

4.2 Building the docs

If you wish to build the docs, you’ll need a few more dependencies. Inkscape is used for conversion
of SVGs to other formats, Graphviz is used for rendering certain charts, and TeX Live is required for
building PDF output. The following command should install all required dependencies:

$ sudo apt install texlive-latex-recommended texlive-latex-extra \
texlive-fonts-recommended texlive-xetex graphviz inkscape xindy

Once these are installed, you can use the “doc” target to build the documentation:

$ workon colorzero
(colorzero) $ cd ~/colorzero
(colorzero) $ make doc

The HTML output is written to build/html while the PDF output goes to build/latex.

4.3 Test suite

If you wish to run the colorzero test suite, follow the instructions in Development installation (page 19)
above and then make the “test” target within the sandbox:

$ workon colorzero
(colorzero) $ cd ~/colorzero
(colorzero) $ make test

20 Chapter 4. Development

CHAPTER 5

Change log

5.1 Release 2.0 (2021-03-15)

• Dropped Python 2.x support. Current Python support level is 3.5 and above.

• Added html and css format specifications to the Color (page 7) class’ string-formatting capabilities.

5.2 Release 1.1 (2018-05-15)

• Added ability to generate ANSI codes with Format Strings (page 14).

• Added Color.gradient() (page 12) method.

• Exposed the various difference functions in the API (euclid() (page 17), cie1976() (page 17),
etc).

• Various doc fixes and enhancements.

5.3 Release 1.0 (2018-03-10)

1.0 is the first release after breaking the library out of the picamera60 project. As this is a 1.x release,
API stability will be maintained.

60 https://github.com/waveform80/picamera

21

https://github.com/waveform80/picamera

colorzero 2.0 Documentation

22 Chapter 5. Change log

CHAPTER 6

License

Copyright 2016-2021 Dave Jones61

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the dis-
tribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

61 dave@waveform.org.uk

23

mailto:dave@waveform.org.uk

colorzero 2.0 Documentation

24 Chapter 6. License

Index

B
Blue (class in colorzero), 16
blue (colorzero.Color attribute), 9

C
cie1976() (in module colorzero), 17
cie1994g() (in module colorzero), 17
cie1994t() (in module colorzero), 17
ciede2000() (in module colorzero), 17
cmy (colorzero.Color attribute), 13
cmyk (colorzero.Color attribute), 13
Color (class in colorzero), 7

D
deg (colorzero.Hue attribute), 16
difference() (colorzero.Color method), 10

E
ease_in() (in module colorzero), 18
ease_in_out() (in module colorzero), 18
ease_out() (in module colorzero), 18
euclid() (in module colorzero), 17

F
from_cmy() (colorzero.Color class method), 11
from_cmyk() (colorzero.Color class method), 11
from_hls() (colorzero.Color class method), 11
from_hsv() (colorzero.Color class method), 11
from_lab() (colorzero.Color class method), 11
from_luv() (colorzero.Color class method), 11
from_rgb() (colorzero.Color class method), 11
from_rgb24() (colorzero.Color class method), 11
from_rgb565() (colorzero.Color class method), 11
from_rgb_bytes() (colorzero.Color class method),

12
from_string() (colorzero.Color class method), 12
from_xyz() (colorzero.Color class method), 12
from_yiq() (colorzero.Color class method), 12
from_yuv() (colorzero.Color class method), 12
from_yuv_bytes() (colorzero.Color class method),

12

G
gradient() (colorzero.Color method), 12

Green (class in colorzero), 15
green (colorzero.Color attribute), 9

H
hls (colorzero.Color attribute), 13
hsv (colorzero.Color attribute), 13
html (colorzero.Color attribute), 13
Hue (class in colorzero), 16
hue (colorzero.Color attribute), 13

L
lab (colorzero.Color attribute), 13
Lightness (class in colorzero), 17
lightness (colorzero.Color attribute), 13
linear() (in module colorzero), 18
Luma (class in colorzero), 17
luma (colorzero.Color attribute), 13
luv (colorzero.Color attribute), 13

R
rad (colorzero.Hue attribute), 16
Red (class in colorzero), 15
red (colorzero.Color attribute), 9
repr_style (colorzero.Color attribute), 9
rgb (colorzero.Color attribute), 13
rgb565 (colorzero.Color attribute), 14
rgb_bytes (colorzero.Color attribute), 14

S
Saturation (class in colorzero), 16
saturation (colorzero.Color attribute), 14

X
xyz (colorzero.Color attribute), 14

Y
yiq (colorzero.Color attribute), 14
yuv (colorzero.Color attribute), 14
yuv_bytes (colorzero.Color attribute), 14

25

	Installation
	Getting started
	API
	Development
	Change log
	License
	Index

